If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=9/491
We move all terms to the left:
b^2-(9/491)=0
We add all the numbers together, and all the variables
b^2-(+9/491)=0
We get rid of parentheses
b^2-9/491=0
We multiply all the terms by the denominator
b^2*491-9=0
Wy multiply elements
491b^2-9=0
a = 491; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·491·(-9)
Δ = 17676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17676}=\sqrt{36*491}=\sqrt{36}*\sqrt{491}=6\sqrt{491}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{491}}{2*491}=\frac{0-6\sqrt{491}}{982} =-\frac{6\sqrt{491}}{982} =-\frac{3\sqrt{491}}{491} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{491}}{2*491}=\frac{0+6\sqrt{491}}{982} =\frac{6\sqrt{491}}{982} =\frac{3\sqrt{491}}{491} $
| (X+5)y=3300 | | -6(t+1)-t-14=-7(t+14)+8 | | 2-3n=1 | | 8^(2x+3)=48 | | 15-(3x+1)=(x+1)+3x | | 20+5a=20 | | -3x-(x+4)=3 | | x/8+6=14 | | (X-5)y=3300 | | 5a+20=20 | | 7x+12+6x=1 | | 561=2x | | 5y(86-y)0=86+4y | | 5x−1=30 | | -6+49r^2=43 | | 9/15=4x | | 1/100=d^2 | | 24x+12x+6x=90 | | (5x-8)(x-5)=0 | | -5(k+1)-2(3+k)=-4 | | 5y(86-y)=86+4y4 | | 15/9=4x | | (x+1)(x+3)^2=2 | | 9+m=16 | | X=-25+1.5x | | -1=-7(p+4)+4(1-4p) | | 28x^2-4x=0 | | 4-3b=2(3b+1) | | 2u-12=8(u+3) | | 37=d-14 | | 18y/3-7=7y | | ((x^2)-(3x)-(10))/(x+4)=0 |